
Two-Client and Multi-client Functional Encryption
for Set Intersection and Variants

Tim van de Kamp David Stritzl Willem Jonker Andreas Peter

ACISP 2019

Functional Encryption for Set Operations

· · ·

evaluate
⋂n

i=1 Si

S1 S2 Sn

Privacy-preserving information sharing

Two-client and multi-client constructions for various set operations

Evaluation using a proof-of-concept implementation

2

Privacy-Preserving Information Sharing

S1 S2

Private Set Intersection

computing f (S1,S2)

using MPC

Computes a set operation using an interactive protocol

A participant learns the evaluation result

Functional Encryption for Set Operations

Computes a set operation using a non-interactive scheme

A third-party (the evaluator) learns the evaluation result

Use cases include

privacy-preserving profiling

simple data mining

one-way data sharing

3

Privacy-Preserving Information Sharing

S1 S2

Private Set Intersection

computing f (S1,S2)

using MPC

Computes a set operation using an interactive protocol

A participant learns the evaluation result

Functional Encryption for Set Operations

Computes a set operation using a non-interactive scheme

A third-party (the evaluator) learns the evaluation result

Use cases include

privacy-preserving profiling

simple data mining

one-way data sharing

3

Privacy-Preserving Information Sharing

S1 S2

Private Set Intersection

computing f (S1,S2)

using MPC

Computes a set operation using an interactive protocol

A participant learns the evaluation result

Functional Encryption for Set Operations

Computes a set operation using a non-interactive scheme

A third-party (the evaluator) learns the evaluation result

Use cases include

privacy-preserving profiling

simple data mining

one-way data sharing

3

Multi-client Non-interactive Set Intersection
Functionality

f (S1,S2, . . . ,Sn)

(ID,S1) (ID,S2) (ID,Sn)

S1 S2 · · · Sn

1 2 n

FUNCTIONALITIES f
intersection:

⋂

i Si

cardinality:
�

�

⋂

i Si
�

�

threshold:
�

�

⋂

i Si
�

�

?
> t ⇒

⋂

i Si
(also “with data transfer”)
doesn’t learn the individual
clients’ sets S1, . . . ,Sn

cannot mix-and-match
old and new inputs

collusion between the evaluator
and client(s) does not reveal other
clients’ inputs

4

Multi-client Non-interactive Set Intersection
Functionality

f (S1,S2, . . . ,Sn)

(ID,S1) (ID,S2) (ID,Sn)

S1 S2 · · · Sn

1 2 n

FUNCTIONALITIES f
intersection:

⋂

i Si

cardinality:
�

�

⋂

i Si
�

�

threshold:
�

�

⋂

i Si
�

�

?
> t ⇒

⋂

i Si
(also “with data transfer”)

doesn’t learn the individual
clients’ sets S1, . . . ,Sn

cannot mix-and-match
old and new inputs

collusion between the evaluator
and client(s) does not reveal other
clients’ inputs

4

Multi-client Non-interactive Set Intersection
Security Requirements

f (S1,S2, . . . ,Sn)

(ID,S1) (ID,S2) (ID,Sn)

S1 S2 · · · Sn

1 2 n

FUNCTIONALITIES f
intersection:

⋂

i Si

cardinality:
�

�

⋂

i Si
�

�

threshold:
�

�

⋂

i Si
�

�

?
> t ⇒

⋂

i Si
(also “with data transfer”)

doesn’t learn the individual
clients’ sets S1, . . . ,Sn

cannot mix-and-match
old and new inputs

collusion between the evaluator
and client(s) does not reveal other
clients’ inputs

4

Multi-client Non-interactive Set Intersection
Security Requirements

f (S1,S2, . . . ,Sn)

(ID′,S1) (ID,S2) (ID′,Sn)

S1 S2 · · · Sn

1 2 n

FUNCTIONALITIES f
intersection:

⋂

i Si

cardinality:
�

�

⋂

i Si
�

�

threshold:
�

�

⋂

i Si
�

�

?
> t ⇒

⋂

i Si
(also “with data transfer”)
doesn’t learn the individual
clients’ sets S1, . . . ,Sn

cannot mix-and-match
old and new inputs

collusion between the evaluator
and client(s) does not reveal other
clients’ inputs

4

Multi-client Non-interactive Set Intersection
Security Requirements

f (S1,S2, . . . ,Sn)

(ID,S1) (ID,S2) (ID,Sn)

S1 S2 · · · Sn

1 2 n

FUNCTIONALITIES f
intersection:

⋂

i Si

cardinality:
�

�

⋂

i Si
�

�

threshold:
�

�

⋂

i Si
�

�

?
> t ⇒

⋂

i Si
(also “with data transfer”)
doesn’t learn the individual
clients’ sets S1, . . . ,Sn

cannot mix-and-match
old and new inputs

collusion between the evaluator
and client(s) does not reveal other
clients’ inputs

4

Construction: Two-Client Set Intersection Cardinality

|S1 ∩ S2| = |ct1 ∩ ct2|

ct1 ct2

S1 S2
ct1 = {ϕmsk(ID, xj) | xj ∈ S1 } ct2 = {ϕmsk(ID, xj) | xj ∈ S2 }

5

Construction: Two-Client Set Intersection Cardinality

|S1 ∩ S2| = |ct1 ∩ ct2|

ct1 ct2

S1 S2
ct1 = {ϕmsk(ID, xj) | xj ∈ S1 } ct2 = {ϕmsk(ID, xj) | xj ∈ S2 }

5

Construction: Two-Client Set Intersection

S1 ∩ S2 =
¦

ϕ−1
kID,j

(c) | c ∈ ct1 ∩ ct2
©

kID,j = kusk1
ID,j · k

usk2
ID,j

ct1 ct2

S1 S2
ct1 =

¦

�

kusk1
ID,j ,

ϕkID,j (xj)
�

| xj ∈ S1

©

ct2 =
¦

�

kusk2
ID,j ,

ϕkID,j (xj)
�

| xj ∈ S2

©

usk1 + usk2 = 1

kID,j = ϕmsk(ID, xj)
6

Construction: Two-Client Set Intersection

S1 ∩ S2 =
¦

ϕ−1
kID,j

(c) | c ∈ ct1 ∩ ct2
©

kID,j = kusk1
ID,j · k

usk2
ID,j

ct1 ct2

S1 S2
ct1 =

¦

�

kusk1
ID,j , ϕkID,j (xj)

�

| xj ∈ S1

©

ct2 =
¦

�

kusk2
ID,j , ϕkID,j (xj)

�

| xj ∈ S2

©

usk1 + usk2 = 1
kID,j = ϕmsk(ID, xj)

6

Construction: Two-Client Set Intersection

S1 ∩ S2 =
¦

ϕ−1
kID,j

(c) | c ∈ ct1 ∩ ct2
©

kID,j = kusk1
ID,j · k

usk2
ID,j

ct1 ct2

S1 S2
ct1 =

¦

�

kusk1
ID,j , ϕkID,j (xj)

�

| xj ∈ S1

©

ct2 =
¦

�

kusk2
ID,j , ϕkID,j (xj)

�

| xj ∈ S2

©

usk1 + usk2 = 1
kID,j = ϕmsk(ID, xj)

Doesn’t have to be xj ∈ S1;
can be any associated data

6

Intuition: Two-Client Threshold Set Intersection

S1 ∩ S2 =
¦

ϕ−1
kID,j

(c) | c ∈ ct1 ∩ ct2
©

kID,j = kusk1
ID,j · k

usk2
ID,j

ct1 ct2

S1 S2
ct1 =

¦

�

kusk1
ID,j , ϕkID,j (xj)

�

| xj ∈ S1

©

ct2 =
¦

�

kusk2
ID,j , ϕkID,j (xj)

�

| xj ∈ S2

©

usk1 + usk2 = 1
kID,j = ϕmsk(ID, xj)

We also encrypt this value and require
at least t secret shares for decryption

7

Efficiency of the 2C-FE Constructions

101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

100

Size of each client’s set

M
ea

n
ev

al
ua

tio
n

tim
e

(s
ec

on
ds

)

CA

8

Efficiency of the 2C-FE Constructions

101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

100

Size of each client’s set

M
ea

n
ev

al
ua

tio
n

tim
e

(s
ec

on
ds

)

CA
SI

8

Efficiency of the 2C-FE Constructions

101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

100

Size of each client’s set

M
ea

n
ev

al
ua

tio
n

tim
e

(s
ec

on
ds

)

CA
SI
Th-CA
Th-SI

8

Construction: Multi-client Set Intersection Cardinality

count
∏n

i=1 H(ID, xj)
uski ?

= 1

ct1 ct2 ctn

S1 S2 · · · Sn

cti =
�

H(ID, xj)
uski | xj ∈ Si

	

∑n
i=1 uski = 0

9

Efficiency of the MC-FE Construction

Theoretical
Polynomial in the number of set elements per client:

O
�∏

i |Si |
�

Practice

0 100 200
0

200

400

Size of each client’s set

M
ea

n
ev

al
ua

tio
n

tim
e

(s
ec

on
ds

) CA n = 5
CA n = 3

10

Improved Set Intersection Cardinality Scheme

Intuition
1 Compute the set intersection

⋂

i Si “in the encrypted domain”;

2 For some client i ′, determine how many set elements ej ∈ Si ′ are in the
encrypted set intersection, i.e.,

�

�

�

�

�

¨

ej | ej ∈
n
⋂

i=1
Si ,ej ∈ Si ′

«

�

�

�

�

�

.

“Tools”
Bloom filters→ to represent sets in a single data structure

Homomorphic encryption→ to compute in the encrypted domain

Functional encryption→ to determine whether an element is in a set

11

Improved Set Intersection Cardinality Scheme

Intuition
1 Compute the set intersection

⋂

i Si “in the encrypted domain”;

2 For some client i ′, determine how many set elements ej ∈ Si ′ are in the
encrypted set intersection, i.e.,

�

�

�

�

�

¨

ej | ej ∈
n
⋂

i=1
Si ,ej ∈ Si ′

«

�

�

�

�

�

.

“Tools”
Bloom filters→ to represent sets in a single data structure

Homomorphic encryption→ to compute in the encrypted domain

Functional encryption→ to determine whether an element is in a set

11

Preliminaries: Bloom filters

Set Intersection

bs[1] bs[2] bs[3] bs[4] bs[5] bs[6] bs[7] bs[8] bs[9]

S1 0 1 0 1 1 1 0 0 0

∩ ∧

S2 0 0 0 1 0 1 0 0 1

=

S1 ∩ S2 0 0 0 1 0 1 0 0 0

12

Construction (simplified)

Set Intersection using Secret Sharing

bs[1] bs[2] bs[3] bs[4] bs[5] bs[6] bs[7] bs[8] bs[9]

Enc(S1) r1,1 s1,2 r1,3 s1,4 s1,5 s1,6 r1,7 r1,8 r1,9

+

Enc(S2) r2,1 r2,2 r2,3 s2,4 r2,5 s2,6 r2,7 r2,8 s2,9

=

Enc(S1 ∩ S2) r̃1 r̃2 r̃3 1 r̃5 1 r̃7 r̃8 r̃9

Encrypt(uski , ID,Si)
H(ID, ℓ)ri ,ℓ if bs[ℓ] = 0;
H(ID, ℓ)si ,ℓ if bs[ℓ] = 1

Evaluate(ct1, . . . , ctn)

H(ID, ℓ)s0,ℓ ·
�

∏n
i=1 H(ID, ℓ)si ,ℓ

�

13

Construction (simplified)

Set Intersection using Secret Sharing

bs[1] bs[2] bs[3] bs[4] bs[5] bs[6] bs[7] bs[8] bs[9]

Enc(S1) r1,1 s1,2 r1,3 s1,4 s1,5 s1,6 r1,7 r1,8 r1,9

+

Enc(S2) r2,1 r2,2 r2,3 s2,4 r2,5 s2,6 r2,7 r2,8 s2,9

=

Enc(S1 ∩ S2) r̃1 r̃2 r̃3 1 r̃5 1 r̃7 r̃8 r̃9

Encrypt(uski , ID,Si)
H(ID, ℓ)ri ,ℓ if bs[ℓ] = 0;
H(ID, ℓ)si ,ℓ if bs[ℓ] = 1

Evaluate(ct1, . . . , ctn)

H(ID, ℓ)s0,ℓ ·
�

∏n
i=1 H(ID, ℓ)si ,ℓ

�

13

Construction (simplified)

Set Intersection using Secret Sharing

bs[1] bs[2] bs[3] bs[4] bs[5] bs[6] bs[7] bs[8] bs[9]

Enc(S1) r1,1 s1,2 r1,3 s1,4 s1,5 s1,6 r1,7 r1,8 r1,9

+

Enc(S2) r2,1 r2,2 r2,3 s2,4 r2,5 s2,6 r2,7 r2,8 s2,9

=

Enc(S1 ∩ S2) r̃1 r̃2 r̃3 1 r̃5 1 r̃7 r̃8 r̃9

Encrypt(uski , ID,Si)
H(ID, ℓ)ri ,ℓ if bs[ℓ] = 0;
H(ID, ℓ)si ,ℓ if bs[ℓ] = 1

Evaluate(ct1, . . . , ctn)

H(ID, ℓ)s0,ℓ ·
�

∏n
i=1 H(ID, ℓ)si ,ℓ

�

13

Construction (simplified)

Set Intersection using Secret Sharing

bs[1] bs[2] bs[3] bs[4] bs[5] bs[6] bs[7] bs[8] bs[9]

Enc(S1) r1,1 s1,2 r1,3 s1,4 s1,5 s1,6 r1,7 r1,8 r1,9

+

Enc(S2) r2,1 r2,2 r2,3 s2,4 r2,5 s2,6 r2,7 r2,8 s2,9

=

Enc(S1 ∩ S2) r̃1 r̃2 r̃3 1 r̃5 1 r̃7 r̃8 r̃9

Encrypt(uski , ID,Si)
H(ID, ℓ)ri ,ℓ if bs[ℓ] = 0;
H(ID, ℓ)si ,ℓ if bs[ℓ] = 1

Evaluate(ct1, . . . , ctn)

H(ID, ℓ)s0,ℓ ·
�

∏n
i=1 H(ID, ℓ)si ,ℓ

�

Actual construction is more involved:

element testing uses
�

H(ID, ℓ)s0,ℓgt ·r � ·
∏n

i=1 H(ID, ℓ)si ,ℓ ?
= (gr)t ′

using Shamir secret sharing instead of
additive secret sharing

13

Efficiency of the MC-FE Construction

Theoretical
Polynomial in the number of set elements per client:

O
�

x2�

Practice

0 100 200
0

200

400

Size of each client’s set

M
ea

n
ev

al
ua

tio
n

tim
e

(s
ec

on
ds

) CA n = 5
CA n = 3

14

Efficiency of the MC-FE Construction

Theoretical
Polynomial in the number of set elements per client:

O
�

x2�

Practice

0 100 200
0

200

400

Size of each client’s set

M
ea

n
ev

al
ua

tio
n

tim
e

(s
ec

on
ds

) CA n = 5
CA n = 3
CA-BF n = 5
CA-BF n = 3

14

Summary

Non-interactive privacy-preserving information sharing

Efficient two-client constructions for various set operations

Theoretical constructions for various multi-client set operations

Interested?

Implementation: https://github.com/CRIPTIM/nipsi

Contact: t.r.vandekamp@utwente.nl

15

https://github.com/CRIPTIM/nipsi
mailto:t.r.vandekamp@utwente.nl

Summary

Non-interactive privacy-preserving information sharing

Efficient two-client constructions for various set operations

Theoretical constructions for various multi-client set operations

Interested?

Implementation: https://github.com/CRIPTIM/nipsi

Contact: t.r.vandekamp@utwente.nl

15

https://github.com/CRIPTIM/nipsi
mailto:t.r.vandekamp@utwente.nl

	Outline
	Motivation
	Functional Encryption Definitions
	Cryptographic Construction

